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Abstract: The strong coupling regime between a photonic cavity and an artificial atom in
4H-Silicon Carbide-on-insulator photonics is demonstrated, using a high-finesse whisper-
ing gallery mode resonator and a single silicon vacancy center.
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An optically-addressable solid-state spin strongly coupled to a photonic resonator enables deterministic gates
between a flying qubit (a photon) and a quantum memory qubit (electron spin), a valuable resource for building
scalable photon-mediated entanglement [1, 2]. Whereas emitter-cavity systems with large cooperativity but in
the weak coupling regime enable the modification of cavity transmission spectrum [3] for efficient read-out of
the spin state, in a strongly-coupled system, an entangled light-matter state can be directly produced. A large
cooperativity requires that the atom-cavity coupling rate g2 far exceeds the product of the cavity decay rate κ and
the atom dephasing/decay rates (γ). Therefore, a system can still have a large cooperativity even when g < κ , i.e.
when cavity loss rate dominates. In contrast, for the strong coupling metric, the rates κ and γ are treated on an
equal footing. A system is considered strongly coupled if the condition 4g > κ,γ is met. The condition 4g > κ

is challenging to satisfy in integrated photonics and is typically the limiting factor for achieving strong coupling.
This is especially true for color centers, which have a relatively small dipole moment compared to, for instance,
semiconductor quantum dots.

Fig. 1. (a) Illustration of photonic device. A low-roughness resonator is fabricated via photoresist
reflow pattern transfer [4], and addressed via waveguide-fiber interface [5]. The resonator contains
multiple randomly-placed emitters. (b) By spectrally tuning the resonator to the edge of the emitter
inhomogeneous distribution, we isolate a detuning where only a single emitter is well-coupled to the
cavity (spatial distribution scan shown in inset). By fitting the measured temporal dynamics of the
emitter cavity system after excitation with a pulsed laser, we obtain 4g/κ = 2.1.

Here, we integrate silicon vacancy color centers [6, 7] into high-finesse whispering gallery mode resonators in
4H-SiC on Insulator [8], and reach the strong coupling regime through a dramatic reduction of cavity loss rate κ .
Following the technique described in Refs. [4, 5, 9], we fabricate whispering gallery mode resonators with finesse
exceeding 103. An illustration of the device is shown in Fig. 1(a). To observe strong coupling between a single
emitter and the resonator, we tune the optical mode via cryogenic gas condensation to the edge of the inhomoge-
nous distribution of the emitters, such that color center emission into the cavity mode is dominated by a single
emitter, as confirmed via second-order autocorrelation measurements as well as a photoluminescence map of the
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device. The optical mode loaded quality factor of 8.55 ·105 is measured via laser transmission, corresponding to
κ = 383 MHz. By exciting the emitter via a pulsed above-resonant mode-locked laser, we observe fast temporal
dynamics of photon emission from the cavity mode (Fig. 1(b)). Under above-resonant excitation, the emitter un-
dergoes spectral diffusion, which is modeled by sampling dynamics for a distribution of emitter detunings. The
result of the model captures the experimentally observed dynamics with the emitter-cavity coupling strength as a
free parameter. The obtained coupling rate g = 198 MHz, higher compared to the previous demonstration [9], is
consistent with the reduced mode volume of the device. Hence, 4g/κ = 2.1, which exceeds the threshold for strong
coupling by two times. We then characterize the single-photon purity and indistinguishably of the light emitted by
the system, observing g(2)(0) = 0.02 and interference visibility of 0.75, which confirms that the realized strongly
coupled system is a source of pure and indistinguishable single photons.

This demonstration is a step toward deterministic gates between stationary and flying qubits mediated by the
solid-state artificial atom spin-optical interface.
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