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Abstract: We develop a titanium:sapphire-on-insulator integrated photonic platform and 
demonstrate a thin-film chip-integrated microdisk laser. The microresonators feature optical 
quality factors exceeding 1 million, enabling a sub-milliwatt lasing threshold. These results 
pave the way for low-cost, compact, chip-integrated titanium:sapphire lasers.

Introduction

Since its first demonstration in 1982, the titanium:sapphire laser [1, 2] has enabled breakthroughs in fundamental
research and has become an essential instrument in numerous technological applications, including the devel-
opment of optical frequency combs [3] and hyperspectral microscopy of biological and chemical samples [4].
Ti:sapphire features the widest gain bandwidth of any laser crystal (700 nm - 1100 nm), which enables the gener-
ation of ultra-short pulses in mode-locked operation, and widely-tunable lasing in continuous-wave regime, with
applications ranging from medical imaging to quantum optics. Due to the short fluorescence lifetime of Ti3+ in
sapphire, very high output power can be achieved in Ti:sapphire lasers; however, this also means that high pump
power is required to achieve population inversion for lasing. Furthermore, there is a large mismatch between the
lasing (700 nm - 1100 nm) and pump wavelength (480 nm - 540 nm), which results in the conversion of a sub-
stantial fraction of the pump power into heat. As a result, Ti:sapphire lasers require high-power pump lasers and
complex temperature management; to date, the Ti:sapphire laser remains an expensive and bulky table-top instru-
ment, preventing its widespread use. Notably, since most applications do not require high laser power, the majority
of the laser output is discarded.

Fig. 1. Ti:sapphire-on-insulator laser. (a) Optical microscope image of an array of Ti:sapphire
microresonators. (b) Colorized scanning electron microscopy image of a 50 µm microdisk. (c) Op-
tical quality factors in excess of 1 million are observed within the lasing bandwidth. (d) Optical
microscope image of the laser below threshold, taken with a long-pass filter to reject the pump laser,
showing Ti3+ flourescence. (e) The amplified spontaneous emission (ASE) spectrum of the device
below threshold (blue, multiplied by a factor of 100), and the lasing spectrum. (f) The output laser
power as a function of the optical pump power.
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Device miniaturization through on-chip integration enables compact, low-power, low-cost photonic devices with
unprecedented capabilities across a wide range of applications [5]. However, the miniaturization of the Ti:sapphire
laser remains elusive. To date, the lowest threshold of 14 mW has been obtained in a millimeter-sized whispering-
gallery mode resonator machined out of single-crystal Ti:sapphire [6]. In this work, we demonstrate a thin-film
Ti:sapphire microresonator laser with a sub-mW threshold, opening a pathway for the ultimate on-chip miniatur-
ization of Ti:sapphire lasers for industrial and research applications.

Device fabrication

The thin-film titanium:sapphire-on-insulator material platform is produced via an adaptation of the grinding-and-
polishing approach described in Ref. [7]. A bulk Ti:sapphire wafer die is first bonded to an undoped sapphire
wafer with an SiO2 interfacial (buried oxide) layer. The bonded Ti:sapphire wafer is then processed in a wafer
grinder (DAG810, Disco Corp.), followed by chemical-mechanical polishing (POLI-400L from G&P Tech.), and
thinning via reactive-ion etching in BCl3 plasma (PlasmaTherm Versaline ICP). This results in a ∼ 500 nm thick
Ti:sapphire film on SiO2. Microdisk resonators are fabricated via photolithographic pattern transfer through a
BCl3 plasma reactive ion etch. After the photoresist pattern has been transferred into the Ti:sapphire layer, the
underlying SiO2 is undercut in hydroflouric acid. A scanning electron microscope (SEM) image of the completed
device is shown in Fig. 1(b).

Device characterization

The sample is mounted on a temperature-controlled stage, and the devices are optically interfaced via a tapered
fiber. A scanning laser is used to characterize the resonators in transmssion across the lasing wavelength range.
For optical pumping, a 532 nm pump laser is used. The output of the tapered fiber is split between a power meter
for resonator mode characterization, and a spectrometer for the characterization of the output spectrum. Optical
quality factors in excess of 1 million are observed in transmission (Fig. 1(c)), indicative of low optical losses of
the fabricated Ti:sapphire-on-insulator material platform.

Upon excitation of the device with a weak 532 nm pump, Ti3+ fluorescence is observed. Fig. 1(d) shows an
optical microscope image of the pumped device captured with a color camera. The amplified spontaneous emission
(ASE) spectrum of the device below threshold is shown in Fig. 1(e). As the pump laser power is increased, single-
mode lasing is observed at a threshold of 450 µW of resonator-coupled pump power (Fig. 1(f)).
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