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Abstract: We demonstrate small-ensemble (N ~ 10 emitters) cavity quantum electrody-
namics with silicon vacancy color centers in microresonators using the 4H-Silicon Carbide
on Insulator photonics platform. © 2023 The Author(s)

Solid-state cavity quantum electrodynamics (CQED) systems, such as cavity-coupled quantum dots [1,2], color
centers in diamond [3-5] and silicon carbide [6], and rare-earth ions [7], have enabled the studies of cavity-
coupled emitters in both microscopic and macroscopic regimes. Experimentally-realized microscopic systems
such as single- and two-emitter CQED devices [1-4,6,7], owing to their low dimensionality, can be solved exactly.
Macroscopic systems, where large ensembles (~ 10° emitters) are coupled to a cavity [8], can via analyzed with
semiclassical approximations. The intermediate — mesoscopic — regime has not yet been experimentally realized
in the solid-state.
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Fig. 1. (a) Scanning electron micrograph (SEM) of the SiC-on-insulator resonator. Inset shows the
field profile of the transverse-magnetic (TM) whispering gallery mode. The TM mode couples op-
tically to the Vg; emitter ensemble. (b) Clockwise and counterclockwise emission from the res-
onator can be independently analyzed via single photon detectors. (c) Second-order photon cross-
correlation measurement of the ensemble emission. Correlating clockwise and counterclockwise
photon statistics results in a quasi-distinguishable statistics, with g(z) (0) = 0.9. (d) autocorrelation
on the clockwise emission reveals superradiant emission, evidenced by g(z) (0) exceeding unity.

Here, using silicon vacancy (Vg;) color centers in silicon carbide coupled to a photonic resonator, we demon-
strate the superradiant emission of a small (N ~ 10) ensemble of emitters in a cavity. The device fabrication is
performed as follows: a 20 um n-doped (nitrogen concentration 2 - 10'3cm™3) SiC epilayer is grown via chemical
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vapor deposition on an n-type (0001) 4H-SiC substrate. The sample is irradiated with 2 MeV electrons with a
fluence of 3.5-10'* cm? to generate Vs; defects. The 4H-SiC-on-insulator material stack is produced via grind-
ing and polishing [9, 10]. A photoresist reflow process [11] is used to fabricate the photonic resonators with low
surface roughness as follows: Photoresist (S1822, Shipley) is patterned using direct write lithography, followed by
post-development bake (30 seconds at 135° C) to induce photoresist reflow. Then, the pattern is transferred into
SiC via a reactive ion etch (SFg gas, Oxford Plasmalab 100). The resonators are undercut via a wet hydroflouric
acid etch and a gas XeF, etch. A side-view of a completed device is shown in Fig. 1(a).

Experiments are performed in a 4 K closed-cycle cryostat (Montana Instruments). Coupling to the resonator is
achieved via a tapered fiber. Cryogenic argon gas condensation is used to tune the microdisk on-resonance with the
emitter ensemble. The above-resonant excitation of the emitter ensemble is performed using a 80 MHz repetition
rate femtosecond pulsed laser (wavelength 740 nm). The emission is filtered with a home-built monochromator
with a 20 GHz bandwidth. By correlating photon emission into opposite directions inside the resonator (correlating
clockwise emission and counterlockwise emission), we can observe quasi-distinguishable emission behavior for
randomly-placed emitters [6] (Fig. 1(c)), allowing us to estimate the effective number of emitters from the g(2) (0)
value to be N¢gr = 10. In contrast, performing the photon autocorrelation on a single emission direction reveals
superradiant bunching (Fig. 1(d)), indicating indistinguishable emission of the ensemble of emitters.

This demonstration is a step towards investigating mesoscopic disordered multi-emitter systems. Furthermore,
combined with integrated spectral control of individual emitters via dc Stark shift [12], the demonstrated device
architecture may enable the engineering of controllable multi-emitter interactions.
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