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The field of cavity quantum electrodynamics (QED) has seen a recent resurgence of interest in few-
and many-body physics owing to the realization that the breaking of symmetries and the presence of
disorder can give rise to entirely new phenomena''?. Here we demonstrate a few-emitter cavity QED
system capable of realizing new Hamiltonians in quantum optics based on breaking of symmetries
and the realization of an in situ Kerr nonlinearity. Our experiment relies on a high-finesse silicon
carbide whispering gallery mode resonator hosting an ensemble of silicon vacancy color centers®.
The simultaneous presence of spectral and spatial disorder of the mesoscopic atom system gives
rise to emergent chirality, and the optical nonlinearity of the silicon carbide host crystal enables
the observation of atom-photon correlations induced by a four-photon nonlinear process. This work

demonstrates the potential for solid state defect systems to realize emerging proposals

46 and to

study fundamental physics in quantum electrodynamics.

INTRODUCTION

In recent years, the study of quantum many-body
physics has been advanced by experimental achievements
in analog quantum simulation using synthetic quan-
tum matter, such as trapped ions”®, superconducting
qubits?19, (ultra-)cold atoms in optical lattices!* 13, or
Rydberg tweezer arrays'* 8. An ever-improving level of
tunability across these platforms has opened the door to
the exploration of controllable complexity in many-body
systems, laying the groundwork for a deeper understand-
ing of emergent phenomena.

Within the purview of quantum optics, it is desirable
to develop similarly controllable experimental platforms
to study driven-dissipative many-body systems out of
equilibrium. Especially in the presence of long-range
photon-mediated interactions, such systems display rich
physics, such as collective dissipative dynamics®'?, non-
equilibrium phase transitions?%?!, and emergent exotic
spin models??23. Long-range interactions are naturally
realized in the setting of cavity QED (CQED), which has
recently garnered renewed interest in settings where the
cooperative light-matter coupling competes with disor-
der, leading to the emergence of entirely new phenom-
ena. Such phenomena have already been observed in
single-mode CQED for spectral’ and spatial? disorder.
Furthermore, the presence of even a single additional op-
tical mode can significantly alter the properties of these

light-matter interfaces2425,

To date, experimental realizations of CQED systems
have predominantly focused either on large atomic en-
sembles (N ~ 10% — 10°) amenable to a semi-classical
description20:26-28 " or very few individual atoms (N ~
2)329, Recently, deterministic loading of up to 10 atoms
into a cavity has been demonstrated3?, albeit in a highly
symmetric configuration. Meanwhile, the regime of in-
termediate N with individual atom control and tailored
asymmetric tunable interactions remains largely unex-
plored experimentally, but provides a considerable theo-
retical challenge, and may prove crucial for developing a
“bottom-up” understanding of strongly-correlated many-
body quantum optical phenomena.

Here, we report on the study of this mesoscopic regime
in a two-mode CQED system based on artificial atoms in
silicon carbide (SiC)?3!. Through advances in nanofab-
rication, we reach the strong-coupling regime between a
single atom and a cavity, and these strong interactions
enable us to observe multi-emitter interference effects of
N ~ 10 atoms. The geometry of the cavity allows for
independent spatial addressing of individual atoms and
the extraction of Hamiltonian parameters, crucial for fu-
ture atom-by-atom control in such systems. The intrinsic
stability of phase and coupling strength in the solid state
enable the use of this system to study phase and spectral
disorder and their role in emergent phenomena, specif-
ically in the suppression of photon correlations and the



emergence of steady-state chirality. Finally, we leverage
the unique advantage of the solid-state resonator — its
strong material Kerr nonlinearity®? — to realize a para-
metric drive term, where the atom ensemble is driven
directly by the spontaneous photon pair generation in
the resonator, opening the door to the observation of nu-
merous effects based on emitter interactions with optical
nonlinear processes® %3335,

THE DEVICE

In order to reach the strong coupling regime with
single artificial atoms, we develop a direct pattern
transfer process from photoresist to SiC that enables
small-diameter, low-roughness whispering gallery mode
(WGM) resonators. A WGM resonator is typically
considered sub-optimal for realizing strong light-matter
interactions® due to its large mode volume (V) com-
pared to the subwavelength confinement attainable in
photonic crystals®®. In terms of raw atom-cavity cou-
pling rate g o< 1/4/V, this is indeed true. However, in
the strong atom-cavity coupling regime, the magnitude
of g must be considered relative to both the atom and
cavity decoherence rates (v and &, respectively). In this
context, WGM resonators, unmatched in attainable pho-
ton storage times, are quite appealing, since typically
is the limiting factor to attaining strong coupling. In
our fabricated devices, a low surface roughness of 3 A
RMS with a radius of curvature as small as 8.3 pm is
achieved, which results in a steep wedge angle that min-
imizes photon scattering (reduce k) and reduces interac-
tions of the atoms with surface noise. The fabrication
flow and scanning electron image of a completed device
are shown in Fig. 1(a),(b) (see Methods for details). To
couple to the resonator, a traditional silica fiber-taper
interface is ineffective due to the large index mismatch
between SiC and SiOs and the mechanical instability in
presence of vibrations of the closed-cycle cryostat. To ad-
dress these challenges, we utilize a cryo-compatible and
mechanically-compliant photonic microprobe. The mi-
croprobe consists of a single-mode SiC waveguide (fabri-
cated with electron-beam lithography) interfaced directly
to tapered single-mode fibers. For maximum mechanical
stability, the waveguide is kept in contact with the res-
onator during measurement. Modifying the contact point
between the waveguide and the resonator allows for wide
and precise control of the waveguide coupling rate k¢ as
well as the coupling ideality6. Details of the waveguide
probe device are described in Ref.?".

The artificial atoms used in this work are the silicon
vacancy (Vsg;) color centers®®. A monoatomic defect in
a uniaxially symmetric 4H-SiC crystal, the Vg; exists in
only two lattice configurations, which are spectrally dis-
tinct. We focus only on the cubic configuration (k-Vg;),
which has an optical transition at 916 nm, and thus treat
all emitters as identical dipoles with an inhomogeneous
spectral detuning. Their out-of-plane dipole moment

couples optimally to the TM modes of the resonator. To
generate the artificial atoms in the resonator, the crystal
is uniformly irradiated with high-energy electrons prior
to device fabrication (see Methods for details).

To map out the cavity-coupled emitters, a free-space
excitation beam is rastered over the resonator while de-
tecting emission into the waveguide. The resulting in-
tensity map reflects both the location and the strength
of atom-cavity coupling as well as the spectral overlap
with the cavity mode. By tuning the cavity at a slow
constant rate, a map of spatial and spectral distribution
is obtained (Supplementary Video 1).

Prior to studying multi-emitter effects, we consider the
single-emitter CQED system, by tuning the resonator
away from center of the atom’s frequency distribution,
where only one atom is resonant with the cavity mode.
Figure 1(c) shows a scan on a device where only one
emitter is dominantly coupled to the cavity mode. An
undercoupled transmission scan of the cavity mode (in-
set of Fig. 1(d)) reveals a loaded (intrinsic) quality fac-
tor @ = 1.13 - 10% (Q; = 1.29 - 10°). To observe the
temporal dynamics in the system, we excite the emit-
ter from above with an above-resonant (wavelength 780
nm) picosecond mode-locked laser while monitoring the
emission into the waveguide on a single-photon detector.
The resulting dynamics, shown in Fig. 1(d), correspond
to the system evolving with initial conditions of cavity
and emitter in the ground and excited state, respectively.
Since the emitter undergoes spectral diffusion in pres-
ence of above-resonant light, the observed dynamics are
an average of many instances of the system with vary-
ing emitter-cavity detuning (see Methods). While this
averaging suppresses the direct observation of Rabi os-
cillations, the fit reveals an emitter-cavity coupling rate
g = 202 MHz. The ratio of these rates signifies the strong
coupling regime, 4g/xk; = 3.2 > 1, the largest reported
for an atomic defect coupled to a cavity®. We perform
a Hong-Ou-Mandel (HOM) measurement of photon in-
distinguishability. From a raw visibility of 0.76(4), we
obtain an upper bound on the magnitude of dephasing
(7" < 39 MHz) and verify the absence of spectral diffu-
sion on the timescale of the inter-pulse delay (Extended
Data Fig. 1).

THE MODEL

Having benchmarked the performance of the single-
emitter CQED system, we proceed to the full multi-
emitter system. The Hamiltonian, visualized in Fig. 2(a),
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Figure 1: Device for strong coupling of multiple color centers to a whispering-gallery optical mode.
(a) Fabrication flow for high-finesse WGM resonators: Photoresist (PR) is patterned on silicon carbide on insulator;
reflow is performed; PR pattern is transferred into SiC; device is undercut. (b) Scanning electron micrograph of the
resonator profile. Inset: The profile of electric field intensity for the fundamental quasi-TM mode. (c) Raster scan
via an excitation laser showing cavity on-resonance with a single strongly-coupled artificial atom. (d) Temporal
evolution dynamics starting with the atom in the excited state, corresponding to {g,v,x} = {202,65,289}MHz in
presence of spectral diffusion. Inset shows the resonator mode, with intrinsic Q of 1.3-6.

can be decomposed as H= f[e+ﬁcav+f{mt, with (h = 1)
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The terms er and flcav capture the bare emitter and cav-
ity degrees of freedom, respectively. We denote the low-
ering operator for the n-th emitter by o, = |g)Xel|,, and

its optical transition frequency by wt; @ and b denote the
annihilation operators of the clockwise (cw) and counter-
clockwise (ccw) modes that couple to the emitter ensem-
ble, respectively, which are degenerate, with frequency
Weav- Note that H,, contains an additional direct cou-
pling at strength gns between the modes (backscatter-
ing), which arises from the breaking of rotational sym-
metry due to geometric imperfections of the resonator
and proximity of the waveguide probe. The term Hij,
represents the emitter-cavity interaction, with the n-th
emitter coupling to each of the two cavity modes with
equal, real-valued strength g,, and a position-dependent
coupling phase ¢,,. The full model H therefore resembles
a Tavis-Cummings (TC) model, with two cavity modes
instead of one, and with complex coupling strengths.

In addition, the WGM system features a four-photon
nonlinear (Kerr) coupling between ¢cw modes of the form
dm&md;q&jﬂ 41- In this work, we implement a non-
degenerate pair generation process driven by a strong co-
herent pump in the mean-field undepleted-pump regime,
where modes a,a_o are coupled via a pulsed paramet-
ric drive with amplitude Qe (t) = gxerr(@—1)2. This is

represented by the additional Hamiltonian term
I:IKerr = W72&t2&72 + gKerr (<&71>2&Td12 + HC) )

where w_5 denotes the frequency of mode a_s.

We also account for the interaction of the system with
the continuum of free-space modes. The intrinsic loss
rate of the cavity modes is denoted by x;, while the emit-
ter spontaneous emission and dephasing rates are 7, and
v, respectively. The cavity modes couple to cw- and
ccw-propagating waveguide modes with rate ko. Due
to the high finesse of the cavity, modes a,a_1,a_o de-
cay into independent Markovian baths. Furthermore, the
atoms are amenable to individually-controllable incoher-
ent (above-resonant) excitation at a rate y&*. The full
Liouvillian describing the system evolution thus reads

Lp = —i[H, p] + Dep+ Deav,
with dissipative terms given by
D. =Y (1D[6n] + 7, DI6}6n] + 7 Dl51))

n

Deas = 1 (Dla) + Dff] + Dla_s) + Dla ) ,

where D[2]p = @p2T — {274, p}/2 is the Lindblad dissi-
pation superoperator associated to the jump operator &
and Kk = K1 + KC.

The complex coupling phases ¢, in the interaction
Hamiltonian Hj, play a central role in the photon trans-
port through the system. At the level of a single atom, we
can observe an interference effect akin to the Aharonov-
Bohm effect whereby single photons are transferred from
@ to b either (i) directly via gps or (ii) by a cascaded
process via the emitter, thereby acquiring a phase e?¢.
This is consistent with simulations, where we find that
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Figure 2: Model Hamiltonian and phase relations

Fiber stretcher voltage (V)

of atom-cavity and cavity-cavity coupling. (a) The

ensemble of emitters 6; couples to the clockwise (4) and counterclockwise (b) cavity modes with phase ¢; and

coupling strength g; which depend on the position of the emitter in the resonator. Modes @, b may also couple
directly via a backscattering rate gps. The Kerr nonlinear coupling between three clockwise modes a, G_1, and a_o

is proportional to the single-photon nonlinear shift gkerr

. The Markovian bath coupling is indicated in grey. All

cavity modes share the same waveguide and intrinsic decay rates (k¢ and k7). The emitters’ spontaneous emission
and dephasing rates are denoted by v and ', respectively. (b) Single-emitter back-scattering measurement revealing
the effect of atom phase relative to gps via destructive interference of excitation transfer from a to b. Inset:

Schematic representation of the system Hamiltonian. (c

) Experimental setup for measurement of individual atoms’

phases ¢; in the cavity. Inset shows the distribution of atoms in the cavity for one cavity detuning (d) Cavity

transmission scan (detuning relative to 327,108.8 GHz).

(e) Interferometric measurement of the phases of the five

spots labeled in (c¢). Atom fluorescence and reference signal are shown in red and blue, respectively, and the
atom-cavity phase ¢; is indicated in each plot (in radians).

for ¢ = (0 mod 7) the interference is constructive (red
dashed line in Fig. 2(b)). To extract this phase in the
single-emitter system, we coherently excite the device
through the waveguide and measure the back-scattered
photons. We observe instead a destructive interference
and, using a three-parameter fit (g, ¢, and gps), we obtain
¢ = 0.357. If, on the other hand, |/gps greatly exceeds
the collective ensemble-cavity coupling strength, it domi-
nates the temporal back-scattering dynamics entirely (see
Methods and Extended Data Fig. 2). It is apparent that
if gps = 0, photon transport between modes @ and b is
mediated solely by the atoms. Another striking effect of
the complex couplings is the emergence of chiral steady
states, which we discuss in detail in a later section.

In the multi-emitter system, this prompts the ques-

tion of how the relative emitter coupling phases can be
experimentally measured. While in principle the infor-
mation about ¢, is present in the spatial map of the
emitters (see Fig. 2(c)), the high sensitivity of phase to
position (~ 1 deg/nm) would require not only superres-
olution imaging but also precise knowledge of the res-
onator center point and the angular momentum mode
number. Here we present a direct interferometric phase
measurement, which requires no such prior knowledge.
As illustrated in Fig. 2(c), an above-resonant (780 nm)
free-space laser excites individual fluorescent spots, and
the cw and ccw emission directions are combined on a
beamsplitter to form a fiber interferometer. In order to
distinguish atom phase from the fluctuating phase of the
fiber interferometer, a reference interference signal from



a scattering point on the resonator is acquired simul-
taneously (stroboscopically) using a laser resonant with
the cavity. This permits independent measurement of
the phase (mod 7) for each spatially-resolvable atom, as
shown in Fig. 2(e).

These complex couplings to the two common cavity
modes leads to photon-mediated interactions between
the emitters. In the special case of equal coupling
phases ¢, = ¢, for all n, and gps = 0, re-expressing
the emitter-cavity couplings in terms of standing modes
{(e"a + e7%b) /\/2, (e"®a — €?D)//2} de-couples one
mode from the ensemble, constituting a simplification
to a single-mode CQED system. Less trivial configura-
tions give rise to a more complex interplay of the cou-
pling phases in the cavity-mediated interactions, which
are unique to the multi-mode setting. In the regime
where K& > gn, Yn, V0, 72X for n = 1,..., N, the cavity
modes can be adiabatically eliminated*® to obtain an ef-
fective master equation

8tﬁe = _i[Heﬁy ﬁe] + Deffﬁe

for the reduced emitter state p., with (see Methods)

n m,n

. . A 1oy, .
Deffpe = Depe + Z an (UmpO'L - 2{0—;20'7717/)6}) )

m,n

and A, = wf — weay. In the case grs = 0, the dissipative
and coherent interaction strengths, I';,,, and J,,, can be
expressed, after a gauge transformation, as

ATYL + A"L

an =V Fmrn COS((b’rn - (bn) 5 J’rnn = 2
K

F77L7l .
Here, T',, = kg2 /(A2 + k?/4) corresponds to the Purcell
enhancement of the nth-emitter decay rate. For gns # 0,
general formulae for J,,, and I',,, can also be obtained
and display an intricate dependence on both the coupling
phases ¢,, and the detunings A,, (see Methods).

Master equations of the form above are ubiquitous in
quantum optics. They describe the Markovian dynam-
ics of quantum emitters in a wide variety of settings,
including free space and photonic structures, wherein
the properties of the electromagnetic environment lead
to very different interaction matrices Jy., and I',,,. In-
terestingly, when the emitters are all identical except for
their coupling phases, the collective decay rates in our
model at gns = 0 closely resemble those of a set of identi-
cal emitters coupled to a linear waveguide*'*?, with the
coupling phases playing a role analogous to the positions
of the emitters along the waveguide. This makes our
platform an interesting system to investigate phenom-
ena typically associated with waveguide QED (wQED)
settings, such as the recently proposed dynamical mir-
ror (cw-ccw) symmetry breaking®®. However, the coher-
ent interactions in our systems are qualitatively differ-

ent from those present in wQED setups, which invari-
ably leads to further intriguing many-body phenomena
beyond the wQED regime. Moreover, for gns # 0, the
coupling matrices J,,, and I',,, cannot be made real
simultaneously through a gauge transformation, a sit-
uation thus far not explored much in literature. Given
the important role of such complex interactions in tradi-
tional condensed matter systems, giving rise for example
to integer and fractional quantum Hall effect phases, one
might expect a similarly important role in the physics of
disordered many-body systems such as the one we study.

PHOTON STATISTICS FROM A
PHASE-DISORDERED FEW-EMITTER
ENSEMBLE

The many-body effects that arise from cavity-mediated
emitter interactions can be observed in their steady-state
photon correlations. For instance, second-order correla-
tion functions can be used to probe the collective emis-
sion properties of the system®* 8. We have previously
demonstrated in the two-atom case® that the relative cou-
pling phases of the atoms dictate the nature of direc-
tional collective emission into the clockwise and counter-
clockwise modes @ and b. The correlation measurements
in our two-mode system thus display more complex fea-
tures than those observed in single-mode settings.

Since « and ¢ in our system are comparable
in magnitude, emitters that are simultaneously on-
resonance with the cavity are expected to emit mutually-
indistinguishable photons. To measure second- and
third-order correlations (¢(®(7),g® (71, 72)) in the sys-
tem, we excite the resonator at a resonance around
780 nm with a continuous-wave laser, which drives the
emitters incoherently. We detect cw and ccw emission via
five superconducting nanowire single-photon detectors
(SNSPDs), arranged as shown in Fig. 3(a). This config-
uration permits simultaneous observation of up to three
emission events into a single direction as well as cross-
and auto- two-photon correlations in both directions. We
over-couple the cavity to the waveguide (Qr = 3 - 10°)
to increase the photon collection efficiency. The mea-
sured two-photon auto- and cross-correlations are shown
in Fig. 3(b). The auto-correlations g2 (7) display the
well-known bunching behavior previously observed in the
context of wQED with quantum dots*® % and Vg; color
centers***® and most recently in CQED with an ensem-
ble of nitrogen vacancy centers in a fiber Fabry-Pérot cav-
ity*®. The cross-correlations, however, are anti-bunched,
with g((li)(O) < 1. This difference between the auto- and
the cross-correlation is due to the phase disorder of the
emitters in the two mode-degenerate resonator.

In fact, the suppression of the cross-correlation due to
phase disorder can already be observed at the level of
uncorrelated identical emitters. Under the more strin-
gent bad-cavity condition vk > \/n, /Vh, VI, We
find that for uncorrelated emitters, g'2 (0)=2(1—-1/N)
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Figure 3: Steady-state photon correlations from a phase-disordered ensemble. (a) Experimental setup for
measurement of photon correlations. (b) Two-photon auto-correlation g2 (1) (cw,cw), and cross-correlation gl(li)(r)
(cw, ccw). Fit to the bad-cavity model estimates N = 17.4 coupled emitters with phase disorder parameter of

&4 = 0.07. The correlated emission seen in auto-correlation is suppressed in cross-correlation due to phase disorder.
(¢) Theoretical photon correlations from N = 4 uncorrelated identical emitters for different choices of coupling
phases ¢,, corresponding with &, ~ 0.6,0.3,0.06. (d) Exact simulations for the same configurations as (c). We
observe clear qualitative agreement in the dependence on &;4. (e) Measured third-order correlations gé?l)a (left) and
géi)b (right). (f) Third-order correlations obtained from numerical simulations of the bad-cavity master equation,
showing qualitative similarity in the role of {4 < 1 on the bunching at zero time delay. In all simulations, we choose
Yn = 15 MHz, v/, = 40 MHz, 7¢* = 0.37,, g» = 150 MHz and £ = 300 MHz, consistent with experimental parameter

ranges.

while gﬁ)(O) =1+&, —2/N (see Methods), where the

parameter £, = >, cos(2(¢; — ¢;))/N? quantifies the
phase disorder. Specifically, in the absence of varying
coupling phases (§, = 1), bunching is not suppressed. In
this case, even at non-zero time delays g(ﬁ) ()= gé%)(r).
In the opposite limit of maximum disorder (£, = 0), the
cross-correlations are maximally suppressed. The theo-
retical dependence of the photon correlations from inde-
pendent identical emitters on &4 is illustrated in Fig. 3(c),
and we show in Fig. 3(d) that this feature persists also
in the full model. Indeed, this qualitative agreement re-
flects the challenge of discerning measurement-induced
interference effects from truly cooperative emission ex-
clusively from photon statistics®.

To model the experimental data, we derive an expres-
sion for correlations from independent emitters in the
presence of a dark metastable state3® to account for the
characteristic bunching at small time delays. We ob-
tain best fit parameters N = 17.4 and &, = 0.07, indi-
cating a high degree of disorder expected from emitters

with a random azimuthal distribution. However, we note
that caution should be taken in interpreting N as the
experimentally-observed number of cavity-coupled emit-
ters, due to the simplifying assumptions made in deriving
the fit function, which we discuss in detail in the Meth-
ods. Firstly, we assume identical emitters subject to an
identical spectral diffusion, for which we account only
in an approximative way. Secondly, both the bad-cavity
limit and the further assumption of uncorrelated emitters
constitute significant approximations, departures from
which would be expected, at the very least, at the short-
time delay obscured by the detector jitter. While the
low ensemble optical coherence of our system prevents
us from observing definitive signatures of inter-emitter
correlations, it is likely that correlations are present in
the system, as suggested by the quantitative differences
between the predictions of the full model (with compa-
rable parameters to our experiment) and the model of
uncorrelated emitters seen in Figs. 3(c),(d), respectively.
Further experimental advances, most crucially the spec-
tral stabilization®! or post-selection®® of emitters, will be



necessary to observe definitively correlated multi-emitter
states.

It is worth noting that the effect of phase disorder
manifests also in higher-order photon correlations. In
Figs. 3(e) and 3(f), we demonstrate, for instance, that
the third-order auto- and cross-correlations likewise dis-
play bunching and disorder-induced anti-bunching be-
havior, respectively. Experimental access to these higher-
order correlation functions could potentially prove useful
in the future for reliably characterizing the structure of
inter-emitter correlations or the lack thereof, and to ob-
serve multi-photon effects such as spontaneous symmetry
breaking®?.

EMERGENCE OF STEADY-STATE CHIRALITY
IN THE PRESENCE OF SPECTRAL AND
PHASE DISORDER

Beyond the disorder-induced suppression of photon
correlations, the presence of complex emitter-cavity cou-
plings also results generally in a chiral steady state,>3
where the auto-correlation functions of photons emitted
differ depending on the direction (cw or ccw), and where
the cross-correlation function of photons emitted in op-
posite directions is asymmetric in the delay time. This
can be observed already in the simplest scenario, where
a single emitter is coupled to the cavity modes, provided
gbs # 0 (see Fig. 4(a)). In that case, the Hamiltonian
of the system is not invariant under the exchange of the
cavity modes a <> I;, which is equivalent to a change in
the coupling phase ¢ — —¢. For gp,s = 0, by contrast, the
complex coupling phase can be removed by a gauge trans-
formation (redefining e**a — a, and e~i%h — l;), so the
steady state is not chiral in that case. We also note that
for a single emitter, the second-order correlation func-
tions that can be computed from the emitter dynamics
according to the bad-cavity master equation would all be
the same. Therefore, in this case, any observed steady-
state chirality indicates non-Markovian dynamics of the
emitters.

On the other hand, for a system with more than one
emitter, steady-state chirality can be seen to emerge
quite generally within a Markovian description already
at the level of uncorrelated emitters, arising from an in-
terplay between spectral and phase disorder. Beyond the
assumption of independent emitters, however, it is diffi-
cult in general to predict whether the steady state will
be chiral or not (see Methods for details). For example,
the case of two emitters will not display chirality provided
gbs = 0 and that the emitters are indistinguishable (aside
from having different coupling phases), since a change in
the sign of the phases can then be compensated by a per-
mutation of the emitters. For more than two emitters,
the system does not have such a (weak) symmetry, except
in finely tuned situations, and we expect a chiral steady
state, even for indistinguishable emitters. Interestingly,
the presence of chirality appears to be intimately linked

to the non-linearity of the emitters, as there are cases
in which a homologous system where the emitters are
replaced by bosonic modes will display symmetric corre-
lations in the steady state whereas the original emitter
system will not.

Experimentally, we find evidence of chirality by ob-
serving asymmetric cross-correlations gap, (7). Since the
degree of chirality depends on the configuration of emit-
ter detunings with respect to the cavity frequency, by
tuning just a single parameter, namely the cavity detun-
ing, one may observe the transition between chiral and
achiral steady states. This is shown in Fig. 4(b): as the
cavity is red-tuned, chirality disappears. By examining
the above-resonant flourescence map of the emitters, one
can see that the relative intensities of the emitters change
significantly between the start and end of cavity tuning,
indicative of variation of spectral detuning of the emit-
ters (see Figs. 4(c),(d)). In other words, the variation
of the cavity detuning essentially results in the enhanced
participation of a subset of emitters in the emission pro-
cess, whose spectral and phase relations determine the
chirality. We are able to qualitatively reproduce this phe-
nomenon for uncorrelated emitters (see Fig. 4(e)).

PARAMETRIC KERR DRIVE IN A CAVITY
QED SYSTEM

We now turn to the study of the interaction between
the resonator Kerr nonlinearity and the artificial atoms.
The high Q and the strong optical nonlinearity of SiC
render our system naturally suitable for this experiment.
To observe the in-situ interaction of a parametric non-
linearity and a CQED system, we consider the simplest
dynamical process, illustrated in Fig. 5(a). A pulsed co-
herent pump is injected into G_1, which drives signal-idler
pair generation into modes @ and G_». In absence of the
atomic ensemble, the signal-idler pairs will decay from
the resonator on the time-scale of the cavity lifetime. If,
however, the atoms are coupled to a, they may absorb
the signal photon, and then re-emit it; this process takes
place on the time-scale of the (cavity-enhanced) atomic
decay rate. The system will thus exhibit correlations
between idler photons and the emission from the atom
ensemble.

For this experiment, we use the same resonator and
transverse mode as in the multi-emitter experiments
above.  The experimental diagram is illustrated in
Fig. 5(b). The optical parametric process is driven by
a pulse-shaped mode-locked laser. A 2 ps pulse train
with repetition rate of 80 MHz is transformed into a
50 ps pulse train with repetition rate of 0.66 MHz using
a Fabry-Pérot (FP) cavity and an AOM. This accom-
plishes bandwidth-matching of the pump to the cavity
mode and reduces system heating via the lower repeti-
tion rate. After passing through the device, the pump is
spectrally filtered and the signal and idler are separated
via a dichroic filter and sent to single-photon detectors.
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Figure 4: Emergence of steady-state chirality in the presence of spectral and phase disorder. (a) The
simplest example of chiral emission from a strongly-coupled atom-cavity system with inter-mode coupling. Chirality
manifests as non-equivalence of the cw and ccw auto-correlations (red and blue) and as asymmetry of
cross-correlation (grey). Simulation parameters are chosen as A =0,¢ = 7/4, g = 0.3k, gps = 0.5k, v = 0.2k, and
v =~ =0.1k. (b) We experimentally observe the transition between chiral and achiral emission in a
multi-emitter ensemble via continuous tuning of the cavity frequency. Each trace is offset vertically by 0.03 for
clarity. (c,d) Above-resonant fluorescence scan of the cavity at the end and the beginning of cavity scan,
respectively. Reduction (increase) in an emitter intensity between start and end of scan indicates the cavity tuned
closer (further) from the emitter center frequency. (e) Theoretical model with four emitters illustrating chirality
behavior qualitatively similar to the experimental observation. Each trace is offset vertically by 0.04 for clarity.

Photon arrival times are referenced to the pulsed laser
clock.

The parametric pair generation process is realized be-
tween a pair of modes in the quasi-TM mode family of
the resonators. The complementary modes in the fam-
ily were identified via a high-precision laser transmission
scan (Extended Data Fig. 3). The measured normal dis-
persion of —3.7 GHz, shown in Fig. 5(c), is consistent
with finite-element model prediction. The strong normal
dispersion of the resonator is not optimal for realizing an
efficient FWM process due to substantial frequency mis-
match. In order to reduce the detuning of the nonlinear
process relative to k, we increase the loaded Q-factor of
the modes by over-coupling the resonator to the waveg-
uide; this also increases the photon extraction efficiency.
The pump, signal and idler mode transmission spectra
are shown in Fig. 5(d). The pump mode is chosen to be
a longer-wavelength mode relative to the atom-coupled
mode to avoid above-resonant excitation of the Vg; by
the high-power laser. At a pump pulse energy of 15 pJ,
accounting for detection and resonator out-coupling ef-
ficiency, we estimate that signal-idler photon pairs are
generated at a rate of 0.01 pairs/pulse. Examining the
temporal dynamics of photon emission from the resonator
into the signal and idler modes, we observe that whereas
the idler mode shows decay only at the fast timescale
of the cavity lifetime (180 ps), the signal mode features
an additional slow decay corresponding to the Purcell-
enhanced lifetime of the emitter ensemble (4.6 ns). While
this immediately suggests the observation of signal pho-

tons scattered by the atomic ensemble, caution must be
used in attributing the atomic emission to the parametric
drive: At the high pump power levels, other pathways,
such as two-photon excitation, may have contribution to
the atomic fluorescence. A proof that the atom ensem-
ble is driven via parametric pair generation can be ob-
tained by examining the photon correlations between the
atomic emission and the idler photons. In Fig. 5(f), we
compare the second-order correlation ¢(® between the
idler mode and the slow and fast emission into the signal
mode. The fast emission (within < 0.8 ns of the pump
pulse) corresponds to direct decay of a signal photon from
the cavity. The slow emission (> 1.8 ns after the pump
pulse) corresponds to photons scattered by the atoms. A
coincidences-to-accidentals ratio (CAR) of 20 is observed
when correlating signal-idler photon statistics. The CAR
is reduced to 4.2 for the atoms-idler correlations, but still
clearly shows that signal-idler photon statistics are suc-
cessfully imparted upon the atomic ensemble. The raw
correlations data corresponding to Fig. 5(f) is presented
in Extended Data Fig. 4. We thus conclusively demon-
strate the in situ interaction of a parametric nonlinear
process with a CQED system.

DISCUSSION

In summary, we have developed an experimental plat-
form for studying mesocopic CQED based on solid-state
defects in WGM resonators. Due to the unique com-
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Figure 5: Atom-photon correlations via parametric drive of a Kerr resonator. (a) Illustration of the
system dynamics. The pump mode is driven to generate entangled photon pairs into the signal and idler modes.
Whereas the idler photon is emitted from the cavity directly, the signal photon can be absorbed and then re-emitted
by the emitter ensemble. (b) Diagram of the experimental setup. (c) The measured dispersion of the fundamental
TM mode family of the resonator. (d) Loaded Q factors of pump, signal, and idler of 3.7 - 10°, 3.9 - 10°, and

4.3 -10°, respectively. Pump and signal modes are over-coupled to the waveguide. (e) Temporal emission dynamics
into the idler (left) and signal (right) modes. Dashed lines are exponential fits. Idler mode emission is characterized
by a single dominant decay rate (180 ps), whereas the signal emission features two rates, fast (160 ps) and slow

(4.6 ns). The latter corresponds to photons scattering from the atom ensemble. (f) Second-order photon correlation
measurements for signal-idler and atoms-idler photon coincidences.

bination of the long photon lifetime in the cavity and
the narrow inhomogeneous distribution of the atoms, we
reach the single-emitter strong coupling regime and ob-
serve collective interference of ~ 10 emitters. This meso-
scopic regime is evidenced by the observation of simulta-
neously bunched (¢(® > 1) and non-classical (¢ < 1)
statistics from the few-atom ensemble. Realizing for the
first time a two-mode optical system with spectral and
spatial disorder within an atomic ensemble, we observe
and theoretically study the steady-state symmetry break-
ing (chirality) emergent in disordered CQED systems.
Looking ahead, the powerful technique of the recently-
demonstrated check-probe spectroscopy®? can enable the
direct observation of strongly-coupled emitter dynam-
ics, overcoming the fast spectral diffusion of atoms in
the present experiment. Ultimately, through spatial con-
trol of emitter placement in the resonator’®® and elec-
tric control of the emitter detunings®®, we can transition
from the study of static but uncontrolled disorder to pro-
grammable disordered systems.

In demonstrating CQED within a nonlinear resonator
via an in-situ interaction of a Kerr-nonlinear process
with an atomic ensemble, we provide an experimental
platform which can be used for the realization of the-
oretical protocols®%3%56 and the observation of physi-

cal phenomena®*°” related to nonlinear pair generation

and squeezed light in CQED. The system may be en-
gineered to generate atom-atom entanglement directly
via degenerate pair generation (i.e., bichromatic pump-
ing at modes —1 and +1 to generate a pair at mode 0).
Exploring the second-order nonlinearity (present in non-
centrosymmetric crystals such as SiC) for the parametric
drive term may also be worthwhile due to its much larger
intrinsic strength.
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METHODS

Fabrication of WGM resonators. The 4H-SiCOI
material stack is prepared as in Ref.?, with the same bulk
SiC starting material (a 20 pm n-doped epilayer with
a nitrogen concentration 2 - 1013 ecm), with the differ-
ence of 35 times greater electron irradiation dose (fluence
3.5-10 cm~2 at 2 MeV), to generate a larger density of
Vyg; defects. The devices are fabricated in SiCOI via pho-
tolithographic pattern transfer akin to the process first
reported in Ref.’®, but utilizing a short (15 s) bake at
135°C in ambient atmosphere to achieve structures with
a small radius of curvature. The surface roughness of
the resonators is measured via atomic force microscopy.
After pattern transfer, the resonator is undercut via a
vapor hydroflouric acid etch of the SiO, and a gaseous
xenon difluoride etch of the Si.

Fiber-interfaced SiC waveguide probe. The de-
tailed presentation of the development of the fiber-
interfaced waveguide probe3” are presented in separate
publication (in preparation). For this experiment, the
waveguide dimension is optimized for single-mode oper-
ation in TE and TM polarization. In the experiments
presented in this work, a probe with a total transmis-
sion efficiency of 15% (corresponding to 39% in- and out-
coupling efficiencies) is used. To fabricate the probe we
use high-purity semi-insulating 4H-SiCOI (NGK Insula-
tors). Despite operating the probe in-contact with the
resonator surface, due to the small size and mechanical
compliance of the waveguide, no deterioration of the res-
onator performance over time has been observed.

Extracting g from strong coupling dynamics in
presence of spectral diffusion. Above-resonant exci-
tation of the emitter causes fluctuations of local charges
within the silicon carbide crystal in emitter proximity.
Changes in the local charge environment of the emitter
alter its resonant frequency via dc Stark shift®®, causing
spectral diffusion®®. This can be modeled statistically
as sampling independently from a Gaussian distribution
around the center frequency of the emitter. Since the Vg;
has two spin states manifolds with an optical transition
splitting of 1 GHz® due to the excited state zero-field
splitting (ZFS), in absence of spin initialization, a bi-
modal distribution comprising of two Gaussian distribu-
tions separated by the excited state ZFS is used. In the
case of single-photon transport, the emitter-cavity sys-
tem is entirely linear and is modeled exactly via a system
of coupled cavities. For each emitter detuning condition,
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the dynamics are solved numerically via an ordinary dif-
ferential equation solver. To obtain the best fit for the
emitter-cavity coupling g, two alternating gradient de-
scent optimizations are used. The first optimization step
optimizes the emitter coupling parameter and the emitter
central frequency to match the photon occupation in the
resonator cavity. The second step applies scaling factors
to the simulated cavity occupation, including amplitude
scaling, dark-counts noise offset, and excitation time off-
set. Both optimizations are done using gradient descent
with the L-BFGS-B method.

Measurement of photon indistinguishability.
The experimental setup for the HOM measurement is
presented in Fig. 1(a). The cavity-coupled single emit-
ter is excited coherently via a resonant picosecond laser
shaped to a bandwidth of 3 GHz via a bandwidth-tunable
double-pass monochromatic. The back-scattered emis-
sion is detected and passed through the HOM inter-
ferometer before detection on a pair of SNSPDs (Pho-
tonSpot, Inc), correlated with a time tagger. No spec-
tral filtering is performed on detection. The experi-
ment is conducted in a configuration where the cav-
ity is strongly over-coupled to the waveguide (loaded Q
factor of 2.28 - 10°), putting the CQED system into a
weakly-coupled, Purcell-enhanced regime. The emitter
lifetime is measured to be 1.3 ns (Fig. 1(b)), correspond-
ing to a Purcell-enhanced decay rate I' of 122 MHz. We
first measure the single-photon purity of the emission,
and find minimal two-photon coincidence events, with
g?[0] = 0.022(3). We then measure the HOM interfer-
ence in the distinguishable (perpendicular polarizations
of the two interferometer paths) and indistinguishable
(parallel polarizations) configurations. We find that the
consecutively emitted photons are indistinguishable with
a visibility value of V' = 0.76(4). We note that the single-
photon impurity contributions to reduction of V is neg-
ligible. The absence of a “dip” near zero time-delay in-
dicates lack of spectral diffusion on the inter-pulse delay
timescales (12.5 ns)®. From the relation between V, T

and 7/,61

r
V=——,
v +T

we obtain 7/ < 39 MHz. It is an upper bound on dephas-
ing because of the assumption that all visibility degrada-
tion comes from dephasing, thus assuming perfect HOM
balance and polarization alignment. From the intrinsic
linewidths of the two-transitions in the Vg; of 26 MHz
and 14 MHz?8, we obtain an maximum total linewidth of
65 MHz.

Emitter phase estimation. The non-trivial relative
phases {¢;} of emitters can be extracted using the fiber
stretcher MZI shown in Fig. 2(b), which stretches the
fiber using an applied voltage V. To extract the phase
from the MZI, a sinuisoidal fit model A sin(®;(V))+ B is
used for both MZI traces, where ®,;(V) is a polynomial
function of V and A, B are the amplitude and the average



of the MZI signal, respectively. Before fitting, a convolu-
tion is applied to smoothen the MZI traces. The fitting is
performed first by extracting the peaks of the convolved
MZI interference signals, and then ®;(V) is fitted against
the peaks. The fitted parameters from ®; (V) is then used
as initial guess for fitting Asin(®;(V)) + B against the
full signal and reference MZI traces, which is performed
through minimizing the mean square error function using
Powell algorithm, an optimization algorithm that excels
at optimizing noisy functions. The phase ¢; is extracted
as the difference between the resulting fits of both traces.
To estimate errors on the extracted phases, we initialize
SciPy’s curvefit with the fitted parameters and then ob-
tain the diagonal of the fit’s covariance matrix, thereby
finding the error bar for phases.

Effect of large gp,s on back-scattering dynamics.
The ability to carefully control the coupling conditions
of the waveguide to the cavity via the fiber-interfaced
waveguide probe makes it possible to not only control k¢
but also gns, since the waveguide can break the resonator
symmetry significantly. Supplementing the experiment
shown in Fig. 2(e), which illustrated the effect of gns in
the regime where it is commensurate with the effective
back-scattering rate by an atom, we demonstrate what
happens when gp,s dominates. As shown in Fig. 2, we
prepare the cavity resonance in two different conditions,
and compare the back-scattering dynamics for the two
cases. For the case where gy is strong, the direct cavity
back-scattering overwhelms the atom-induced backscat-
tering, as expected. Observation of quantum temporal
dynamics is thus clearly more favorable in the regime of
weak gps.

Bad-cavity master equation. The effective mas-
ter equation presented in the main text is based on the
method proposed in Ref. 40, which we extend to include
the intrinsic emitter dissipation. Specifically, we assume
that the state of the whole system, p, evolves according
to the master equation

atﬁ = _i[ﬁe + ﬁcav + 6I—?[in‘m 15] + EdDeﬁ + Dcavﬁ7 (1)

where
K K
N _ At a - .
Hcav - § Wgapag , Dcav - E "fk:D[ak] y
k=1 k=1

and the emitter-cavity interaction is of the form

Here, aj denotes the annihilation operator of the k-th
bosonic mode, while Sj is an operator of one or several
emitters, which we leave unspecified for the moment. We
also leave H, and D, unspecified for the moment. The
small, dimensionless parameter ¢ makes explicit the sep-
aration between the timescales of bosonic decay, emitter-
cavity interaction, and emitter decay. We discuss the
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cases d = 1 and d = 2 in parallel, since both lead to
essentially the same effective master equation, although
there are subtle differences between the two cases when
computing the photon statistics.

In the limit € — 0, the emitter and cavity subsystems
evolve independently. Any product state of the form
p(to) = pe(to) ® |0X0|, where |0) denotes the vacuum
state of all the bosonic modes, and p. denotes a den-
sity operator of the emitter subsystem, will remain of
the same form at any later times ¢t > ty. In fact, any
steady state is of this form. For e > 0, this is no longer
the case, since eHj,¢ couples the vacuum state to higher
photon-number states. Nonetheless, we can find a uni-
tary transformation

D= exp <eZd£o}k — H.c.) ,
k
where &y is an emitter operator satisfying
TEr A A s Rk .
i[Hg, &) + iwp g, + Sk + = G =0, (2)

such that in the transformed frame the dynamics of any
state within the zero-photon subspace decouples—up to
terms that are O(e®)—from any state with higher photon
number. Concretely, by expanding the system’s Liouvil-
lian in the transformed frame (denoted here by a tilde)
as a power series in €, one can show that a state

pto) = pe(to) @ [0)O]

+€ D (Penlto) ® )0+ He) + O(*), (3)
n#0

will retain the same form at any later times, t > to.
Furthermore, the dynamics of p.(t) up to terms O(e?) is
given by 0ipe = Lot fe, With

CeH,ﬁe = _i[f{eﬁa ﬁe} + Deffﬁe 5
2
€

Heg = He + 5 3 (05 + H.c.) ,
k
Dot = €D, + €2 Z ki D]dy]
k

For a state of the general form above, trcay p = pe+ O(€?).

We now adapt these equations to the case where ﬁe =
>on A, 616, and €Sy, = > 9nk0n. Indeed, the original
master equation in the main text can be written in this
way if it is expressed in terms of the cavity eigenmodes
a1 = (a+b)/v2 and Gy = (a—b)/v/2. In a frame rotating
with the average mode frequency weay, we have A, =
Wy — Weay, W1 = gbs, and wy = —gps. The emitter-mode
couplings and mode decay rates are g,1 = ¢n cos(¢n),
gn2 = —ignsin(¢y), and K1 = k2 = k. A solution of



Eq. (2) is given in this case by

Ink
. 4
Anfwk+iﬁ2k/2 ( )

EOAék;:E an(}n with Cnk —

The effective emitter Hamiltonian ﬁeﬁ and dissipator
Degr can then be written as shown in the main text, with

Z CrkInk + Cnkd,, Z
k9n nk9mk
= n D) n 5 an = chmkc;k .
k k

For gn,s = 0, these coupling matrices can be made real
through a gauge transformation: &, — e»g, with
0, = arg(A, + ik/2). For gns # 0, this is not gener-
ally possible, as can be seen from the values of gauge-
invariant quantities, such as the products Jj,, Jpn Jn for
pairwise distinct indices (I, m,n), which are complex in
general. In Extended Data Fig. 5, we show illustrative
examples of the non-trivial effective interaction patterns
that can be realized for gns # 0.

Average photon number and photon statistics
From p. alone we can compute the mean photon number
in each cavity mode. Since

ar = &k + Géék
€2 e e
+ 9 zz: ([%T,Oék]al + a“ak’alD + 0(€%),
for p of the form shown in Eq. (3), we have

arpal, = Eagpeal ® [0)0] + O(e®).

Thus, to leading order in €, (a}ax) ~ e tr(alagpe). By
the Quantum Regression Theorem, the second-order pho-
ton correlations can be computed as

(afal(r)a;(ra) = tr (aze (anpaf)al) -

Evolving the steady state after the detection of a photon
in the k-th mode, we obtain

e (arpiy) = et (@pedy) @ [0)(0] + O(e?) . (5)

From the first term on the right hand side, the leading
contribution to the second-order photon correlations is

et tr (et (@npeaf)al)

however, there may be contributions of lower or equal
order stemming from the remaining terms. Only when
terms o |n)n| for n # 0, and terms o d;r-|n><n|, |n)nl|a;
on the right-hand side of Eq. (5) are at least O(¢®) and
O(e*), respectively, we can approximate, to leading order
in €,

(afal(r)as(T)an) ~ e tr (djeﬁeffT(dkﬁeézL)&}) . (6)
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This is likely not the case for the particular model we
are considering with d = 1, since the steady state, of the
form shown in Eq. (3), already contains terms o |[n)0|,
with >, ny =1, at order €2. For d = 2, by contrast, one
can show, using the explicit expression (4) for &y, that
the steady state is actually of the form p. ®@[0)0|+ O(€?).
To asses the validity of the approximation, in Extended
Data Fig. 6 we compare the exact and the approximate
values of the second-order coherence functions

(a6 (7)dy (7)da)

:
(akas)(ala,)

ga(:?g)( ) ~ ("L'vy € {avb})7 (7)

for a particular instance of the model, and different val-
ues of € and d. Note that the collective jump opera-
tors associated with the cw and ccw modes a and b are
Gg = (61 + @2)/V/2 and &y = (G — G)/V/2, Tespectively.

Independent emitters. Assuming that the approxi-
mation in Eq. (6) holds, the steady-state correlation func-
tions can be expressed entirely in terms of emitter corre-
lations through Eq. (7). An analytical expression can be
obtained under the assumption that the cavity-mediated
collective interactions are negligible compared to the in-
dependent dynamics of each emitter. In this limit, the
emitters are approximately uncorrelated in the steady
state?6:48:62 such that for the case gps = 0, the cross-
correlations read

gg)) N1+212(n 1)
I,
+2

n#m

Re { ei Sign(7)¢nrn gr(Ll)(T)gT(i)(_T)} ,

with a corresponding expression for géi), and with the
auto-correlations ¢,q(7) = gp(7) obtained by setting
¢n — 0 in this expression. Here, we have defined
Grm = 2(dn — bm), as well as I, = I',(6]6,) and
I =3, I, such that I/I, can be understood as pro-
viding a measure of the relative ‘participation’ of the n-
th emitter in the steady state. Additionally, g,(ll)(T) and

gff ) (7) denote the normalised steady-state correlations of

the n-th emitter, and since gg,,l)(O) =1 and g )( 0) =0,
02250

Note that the term > rZ is minimised for uniformly dis-

tributed values of I,,, and therefore g( )( 0) <2(1-1/N),
which reflects a quite general upper bound on the pho-
ton bunching from independent emitters®®. The cross-
correlations at 7 = 0 can similarly be expressed as

g2(0) = g2(0) + & 1,

where & = > (InIn/I?)cos(¢nm) quantifies the
phase disorder, as discussed in the main text.



To construct the full time dependence of the corre-
lations, we assume that the single-emitter correlations
g,(LI)(T) and gg) (1) can be approximated to lowest order
by the well-known expressions for a two-level system sub-
ject to decay, dephasing and incoherent excitation*®62,
In this case, the cross-correlations take the form

12 ex
2 - T
gib)( ~1_ § :I%e (¥n+72)I7

—(Ynm+Yom +’7n w7 cos (

nmT — ¢nm) ,
n#m

with I, = v&T,, /(s +75X). To lighten the notation, we
have defined Yo = (n + Ym)/2, 155 = (V2 +155)/2,
Yoo = (Vo +70)/2 and A, = A, — A,,. Once again,
Jaa(T) is obtained from this expression by setting ¢, — 0,
and we thus see that, at the level of independent emit-
ters, the auto-correlations will always be symmetric with
respect to 7 = 0, while the cross-correlations may display
some chirality in the presence of non-uniform detunings
A,,, as discussed in the main text.

If we assume identical emitters and neglect the depen-
dence of the decay rates I',, on the detunings A,, then
I, = I/N and the effect of the spectral diffusion of the
emitters can be easily incorporated by assuming that the
frequencies A,, are sampled from independent normal dis-
tributions with mean values u,, and standard deviations
sn. Averaging over these distributions, we obtain*®

—(y )7
e
gab(T) =1 — ————

e~ (VYT \TI

4+ Z e —s2 12/

n#m

where finm = tin — fim and Sp., = \/$2 + s2,. Of course,
the assumption that I,, = I/N will in general be vio-
lated due to the significant spread in emitter frequen-
cies, which results in a non-negligible dependence of each
T, (and hence I,,) on A,,. Likewise, cavity Purcell en-
hancement of each emitter decay rate induces a further
non-trivial frequency dependence in gﬁl)(T) and gf«?) (7).
With these corrections, the averaging over spectral dif-
fusion can no longer be incorporated analytically, and
the above equation should therefore be viewed pragmat-
ically as a minimal model to study the effects of phase
and spectral disorder on photon correlations from inde-
pendent emitters, rather than a quantitatively accurate
description of the experimental system.

(rbnm) i

cos(,uan -

Numerical fit of g( )( ) and gﬁ) (7). In order to cor-
rectly model correlations even at the level of independent
emitters, we must include in the model the metastable
state of the Vg;*®, which contributes a weak bunching
away from 7 = 0 due to population shelving in the long
lived dark state. Within the assumptions outlined in
the previous section, this amounts to replacing the ex-
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pressions for g%l)<7') and géz)(T) with those for a three-
level system. We denote the decay rates from the excited
to the metastable state and from the metastable to the
ground state of the n-th emitter by ~¢ and v, respec-
tively. To lighten the notation, we will also define z,, =
(%+%+%+7 )2, yn = (W +70) 0+ (W +70)70" 5 and
Zn = — y,. Before accounting for spectral diffusion,
the cross—correlations then take the form

1'2
gﬁ)( ~1— Z I% e~ enlTl (cosh z,, | 7| — Ay, sinh 2, | 7|)

I, I
Jrz M o= (Ynm Y+t Vi) 7] 08 (ApmT — Gnm) 5
n#m
where we have further defined A, = (z, — v +

VeV [NE) )z and S, = (VS +75,)/2, and where now
I, = v&~:T, Jyn. We will again assume identical emit-

ters and neglect the dependence of the decay rates I';, on
the detunings A,. In addition, we will assume identical
spectral diffusion across the emitters, so that we obtain

gD ()~ -

1 € ex ’
n (54) _ N> = Y| =52

1
Ne_IIT‘ (cosh z|7| — Asinh z|7|)

The auto- and cross-correlation data in Fig. 1(b) are
fit using this simplified expression with free parameters
{7, 7, 7,75, N,&s}. The spectral diffusion parameter s
is fixed at 1 GHz (corresponding to the cavity linewidth).
The fit to the data includes a convolution with the de-
tector timing jitter (82 ps).

Steady-state chirality toy models. As explained
in the main text, for a system as complex as the one at

hand, one generally would not expect gc%) (1) = géi)(T),

and g( )( ) = géi) (1) = g((lzb)(—T)7 except in certain finely-
tuned cases, such as when the steady state of the system
is unique and the system has a weak symmetry®* that ex-
changes the two resonator modes. Determining whether
such a symmetry exist, or more generally, whether the
correlation functions display the aforementioned behav-
ior, is not as straightforward as one might assume. Here,
we discuss a few illustrative examples. For the sake of
simplicity, we assume that the dissipative part of the mas-
ter equation is permutationally invariant, i.e., all emit-
ter decay rates, pumping rates, and dephasing rates are
equal. Consequently, we limit our analysis to the effects
of disorder in the system Hamiltonian. Furthermore, we
also assume g,z = 0, since otherwise the steady will be
chiral as long as there is at least one complex phase dif-
ferent from 0 (mod 7).

Two-emitter system—1In the case of two emitters, a
gauge transformation lets us split the complex phases



evenly among all the couplings. We can express

3 Ay e
H= )" 7alan+SLa+ST_¢b+H.c., (8)

n=1,2

with S = (g1%6] + g2e760)/V2, ¢ = (¢1 — ¢2)/2.
Exchanging a < b is equivalent to exchanging ¢ < —¢.
Now, if A1 = Ay and g1 = g, exchanging 61 < 65 is
also equivalent to changing ¢ < —¢. So, the system is
invariant under the simultaneous exchange of a < b and
01 > G9. Since this is a symmetry transformation that
permutes the two resonator modes, the second-order co-
herence functions are symmetric under the exchange of
the two resonator modes. On the other hand, if Ay # As
and/or g1 # go this is no longer a symmetry transforma-
tion and the steady state is chiral. Surprisingly, we find
numerically that for A; = Ay = 0 and g1 # ¢o, the
second-order coherence functions are also symmetric.

Three-emitter system—If Ay = Ay = Az and g1 =
g2 = g3 it is possible that the system has a weak sym-
metry akin to the one described in the previous para-
graph for specific values of the complex phases. For ex-
ample, when one of the complex phases is half the sum of
the other two (mod 27). However, for arbitrary complex
phases the steady state is typically chiral, even when the
detunings and coupling strengths are the same for all the
emitters. Again, if Ay = Ay = Az = 0, we find nu-
merically that the second-order coherence functions are
symmetric, regardless the values of the remaining param-
eters. We conjecture that this is always the case for any
number of emitters, as long as all the detunings vanish.

Homologous bosonic system— If the steady state is
such that the emitters remain mostly in their ground
state, one may approximate them by additional bosonic
modes 6, — ¢, forn =1,..., N. This results in a purely
bosonic system that is much easier to simulate, requiring
only a polynomial effort in the number of emitters®®. As
we show in the following, for a system without dephas-
ing there exist a different weak symmetry permuting the

14

two resonator modes in the case where all detunings are
equal (but not necessarily the coupling strengths). Using
matrix multiplication, we can express the Hamiltonian as

AT a
H=3 e+ (&) - éjv)G(B> +He., (9)
n=1
with
g1e’?t gremi "
G = : : (10)
gN6i¢N gN€7i¢N

We can define new orthonormal emitter modes such that
mode a only couples to one of them, say d;, and mode
b only couples to two of them, d; and ds, and they are
decoupled from the rest of the emitter modes, d,, for n =
3,..., N. This can be achieved with a QR decomposition,
G = QR, where Q is an N X N unitary and R is an N x 2
upper triangular matrix, defining

(di - dy)=( - &) Q. (11)

Note that, since the pumping rates and decay rates are
assumed to be the same for all the emitters, the dissipa-
tive part of the Liouvillian keeps the same form in the
new basis. Similarly, we can also define new orthonormal
emitter modes such that b is coupled to one of them, a is
coupled to two of them, and they are decoupled from the
rest. The transformation and the new coupling strengths
are given by the decomposition G* = Q*R*. Since a, b,
and the two emitter modes they are coupled to are in
a chain configuration (with open boundary conditions,
see Fig. 7), the complex phases of the couplings can be
gauged out, so the two transformations lead to equivalent
systems, with the a and b modes interchanged. This im-
plies the symmetry of the second-order coherence func-
tions. Note that this approach cannot be employed in
the case of spins, since the linear combinations of spin
operators defined would not correspond to new spin-1/2
degrees of freedom.
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Extended Data Fig. 1: Hong-Ou-Mandel (HOM) measurement of consecutive photon
indistinguishability. (a) The outline of the experimental setup. A picosecond laser is pulse shaped with a
monochromator (MC) and sent to the resonator coupled to a single emitter. The back-scattered signal is passed
through a HOM unbalanced interferometer with the delay between the arms equal to the inter-pulse delay. Photons
are detected on a pair of SNSPDs and correlated with a time tagger. (b) The temporal response of the system. The
fast decay after the laser pulse arrival time corresponds to the direct back-scattering by the cavity. The atom
emission used for indistinguishability measurment is indicated by the blue region. The dashed line is a fit to an
exponential decay with a lifetime of 1.30 ns. (c¢) Photon correlation for parallel polarization (indistinguishable)
configuration (red), perpendicular polarization (distinguishable) configuration (blue), and single photon purity
configuration bypassing the HOM inteferometer (black). (d) Zoom-in of the center peak in (c). The visibility and
the single photon purity are measured to be V = 0.76(4) and ¢®[0] = 0.022(3).
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Extended Data Fig. 2: Effect of large gns on back-scattering dynamics. (a) Transmission spectra for the same
cavity mode with different strengths of gy controlled by the waveguide coupling condition. The detuning is relative
to 327.10597 THz. Shown in blue is the condition where modes @ and b are coupled weakly (gps/x = 0.053). Shown
in red is the case where the coupling is an order of magnitude stronger, gns/x = 0.54. (b) The back-scattering photo
dynamics corresponding to the two cases.
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Extended Data Fig. 3: Transmission spectroscopy of the WGM resonator. (a) Precisely-calibrated laser
transmission scan of the resonator is performed via a scanning a mode-hop-free external-cavity diode laser while
simultaneously acquiring time-domain transmission through the device and a Mach-Zehnder fiber interferometer
(MZI). The transmission of the MZI serves as a calibrated “ruler” in the frequency domain allowing to map the time
domain signal into the spectral domain. (b) Transmission scan across the tunable laser scanning range. The TM
mode family and the azimuthal mode numbers (relative to the atom-coupled mode) is indicated with red arrows.
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Extended Data Fig. 4: Raw two-photon coincidence data of the parametrically-driven atom ensemble.
(a) Correlations between emission into the signal and idler cavity modes shown for delay spanning +2 periods of the
pump laser. (b,c) A zoom-in view of photon events the zero- and one-period delay, respectively. The integration
time windows for fast emission (cavity only) and slow emission (atom scattering) are indicated in blue and red,

respectively.
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Extended Data Fig. 5: Markovian interaction strengths. Comparison of the Markovian coherent and dissipative
interaction strengths in wQED, with Iy denoting the emision rate into the waveguide*'*2, and for our bad-cavity
model with varied direct coupling strengths gps # 0. Note that we plot only the absolute value of the interaction
strengths, however the interactions are also associated with a non-trivial complex phase which cannot be removed
by a gauge transformation (see Methods). In all panels, we assume identical emitters with A,, = x and g, = 0.01k.
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Extended Data Fig. 6: Second-order coherence functions for two-emitter system. Steady-state photon
correlations for two emitters with system parameters Ay = &, Ay = k/2, ¢1 = /4, ¢ =0, gbs = K/2, gn = €k, and
Y =7 =7 = elk for n = 1,2. Lines correspond to the numerically exact result computed with the full model,
while markers correspond to the approximation based on the effective emitter-only master equation.
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Extended Data Fig. 7: Schematic illustration of homologous bosonic multi-emitter system. On the left,
graphical representation of the Hamiltonian in Eq. (9). The nodes correspond to different bosonic modes and the
lines denote non-zero couplings. It is unitarily equivalent to the two systems on the right, in which the coupling
strengths are the same (the absolute values of the entries of R and R*) but the a and b modes are interchanged.
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